The Regulation of an Electric Oven and an Inverted Pendulum
Ricardo Balcazar,
José de Jesús Rubio,
Eduardo Orozco,
Daniel Andres Cordova,
Genaro Ochoa,
Enrique Garcia,
Jaime Pacheco,
Guadalupe Juliana Gutierrez,
Dante Mujica-Vargas,
Carlos Aguilar-Ibañez
Affiliations
Ricardo Balcazar
Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, México City 02250, Mexico
José de Jesús Rubio
Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, México City 02250, Mexico
Eduardo Orozco
Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, México City 02250, Mexico
Daniel Andres Cordova
Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, México City 02250, Mexico
Genaro Ochoa
Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, México City 02250, Mexico
Enrique Garcia
Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, México City 02250, Mexico
Jaime Pacheco
Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, México City 02250, Mexico
Guadalupe Juliana Gutierrez
Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, México City 02250, Mexico
Dante Mujica-Vargas
Department of Computer Science, Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Cuernavaca 62490, Mexico
Carlos Aguilar-Ibañez
Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz S/N, Col. San Pedro Zacatenco, México City 07738, Mexico
In this research, a proportional integral derivative regulator, a first-order sliding-mode regulator, and a second-order sliding-mode regulator are compared, for the regulation of two different types of mathematical model. A first-order sliding-mode regulator is a method where a sign-mapping checks that the error decays to zero after a convergence time; it has the problem of chattering in the output. A second-order sliding-mode regulator is a smooth method to counteract the chattering effect where the integral of the sign-mapping is used. A second-order sliding-mode regulator is presented as a new class of algorithm where the trajectory is asymptotic and stable; it is shown to greatly improve the convergence time in comparison with other regulators considered. Simulation and experimental results are described in which an electric oven is considered as a stable linear mathematical model, and an inverted pendulum is considered as an asymmetrical unstable non-linear mathematical model.