PLoS Biology (Aug 2021)

Glycerol suppresses glucose consumption in trypanosomes through metabolic contest.

  • Stefan Allmann,
  • Marion Wargnies,
  • Nicolas Plazolles,
  • Edern Cahoreau,
  • Marc Biran,
  • Pauline Morand,
  • Erika Pineda,
  • Hanna Kulyk,
  • Corinne Asencio,
  • Oriana Villafraz,
  • Loïc Rivière,
  • Emmanuel Tetaud,
  • Brice Rotureau,
  • Arnaud Mourier,
  • Jean-Charles Portais,
  • Frédéric Bringaud

DOI
https://doi.org/10.1371/journal.pbio.3001359
Journal volume & issue
Vol. 19, no. 8
p. e3001359

Abstract

Read online

Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This "metabolic contest" depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.