PLoS ONE (Jan 2018)

Feeding and growth of the marine heterotrophic nanoflagellates, Procryptobia sorokini and Paraphysomonas imperforata on a bacterium, Pseudoalteromonas sp. with an inducible defence against grazing.

  • Jakob Tophøj,
  • Rasmus Dam Wollenberg,
  • Teis Esben Sondergaard,
  • Niels Thomas Eriksen

DOI
https://doi.org/10.1371/journal.pone.0195935
Journal volume & issue
Vol. 13, no. 4
p. e0195935

Abstract

Read online

Heterotrophic marine nanoflagellates are important grazers on bacteria in the water column. Some marine bacteria appear more resistant to grazing than do others. Marine nanoflagellates can be grown in the laboratory in batch cultures fed specific bacterial isolates. In some cultures, the flagellates appear unable to completely deplete the bacterial prey even when the bacterial strain otherwise is an excellent prey. This may indicate that some marine bacteria are able to induce defence mechanisms if they are grazed by nanoflagellates. Four morphologically distinct marine heterotrophic nanoflagellates, of which 3 were still identified as Procryptobia sorokini (Kinetoplastea) and one as Paraphysomonas imperforata (Chrysophyceae) were isolated from a coastal location along with 3 isolates of the marine bacterium Pseudoalteromonas sp. Flagellate growth and grazing on bacterial prey were analysed in batch cultures. Pseudoalteromonas was a suitable prey for all 4 flagellate isolates. They grazed and grew on Pseudoalteromonas as sole prey with maximal cell-specific growth rates of 0.1-0.25 h-1 and gross growth efficiencies of 38-61%. Exposure to dense flagellate cultures or their supernatants did, however, cause a fraction of the Pseudoalteromonas cells to aggregate and the bacterium became apparently resistant to grazing. Concentrations of suspended Pseudoalteromonas cells were therefore not decreased below 1,700-7,500 cells μL-1 by any of the flagellate isolates. These results indicate that Pseudoalteromonas sp. can be an excellent prey to marine nanoflagellates but also that is in possession of inducible mechanisms that protect against flagellate grazing.