Cogent Engineering (Jan 2020)
Modelling of sweet gas flaring and the resultant gaseous emissions with their emission factors
Abstract
Data from literature and a stoichiometric material balance model were employed to estimate associated emissions with flaring of sweet gas in Nigerian oil and gas companies. Emission factors were obtained using AP 42 formula. Results showed that thousands of tonnes, ranging from 6500 to 22,000 tonnes of natural gas were flared from 1997 to 2016. At flaring stack efficiencies of 97% and 98%, the associated emissions are: CH4, C2H6, C3H8, iC4H10, nC4H10, iC5H12, nC5H12, C6H14, C7H16, C8H18, C9H20, CO2, and N2 from unburnt natural gas and in addition to CO2, CO, N2, NO, NO2, H2O and H2 from incomplete combustion. At both flaring stack efficiencies, the amount of emissions from unburnt condition ranged from1,608 tonnes N2 to 9,146 tonnes CO2 all higher than any emission standards in the world, while the amounts of emissions from incomplete combustion ranged from 467,964 tonnes for CO2 the lowest to 2,476,011 tonnes for N2 the highest all higher than any emission standards in the globe. Emission factors of emissions from unburnt natural gas ranged from 0.000090 tonne/tonne for C10H22 to 0.026235 tonne/tonne for CH4 while those of the emissions from incomplete combustion ranged from 0.10285 tonne/tonne for H2 to 1.13137 for CO2 tonne/tonne. It was observed that thousands of tonnes of emissions are released into the atmosphere during flaring of sweet natural gas either at complete or incomplete combustion. It is recommended that flaring of natural gas should be reduced to a minimal level to safeguard the environment.
Keywords