Sensors (Mar 2023)

An Integrated Machine Learning-Based Brain Computer Interface to Classify Diverse Limb Motor Tasks: Explainable Model

  • Hend A. Hashem,
  • Yousry Abdulazeem,
  • Labib M. Labib,
  • Mostafa A. Elhosseini,
  • Mohamed Shehata

DOI
https://doi.org/10.3390/s23063171
Journal volume & issue
Vol. 23, no. 6
p. 3171

Abstract

Read online

Terminal neurological conditions can affect millions of people worldwide and hinder them from doing their daily tasks and movements normally. Brain computer interface (BCI) is the best hope for many individuals with motor deficiencies. It will help many patients interact with the outside world and handle their daily tasks without assistance. Therefore, machine learning-based BCI systems have emerged as non-invasive techniques for reading out signals from the brain and interpreting them into commands to help those people to perform diverse limb motor tasks. This paper proposes an innovative and improved machine learning-based BCI system that analyzes EEG signals obtained from motor imagery to distinguish among various limb motor tasks based on BCI competition III dataset IVa. The proposed framework pipeline for EEG signal processing performs the following major steps. The first step uses a meta-heuristic optimization technique, called the whale optimization algorithm (WOA), to select the optimal features for discriminating between neural activity patterns. The pipeline then uses machine learning models such as LDA, k-NN, DT, RF, and LR to analyze the chosen features to enhance the precision of EEG signal analysis. The proposed BCI system, which merges the WOA as a feature selection method and the optimized k-NN classification model, demonstrated an overall accuracy of 98.6%, outperforming other machine learning models and previous techniques on the BCI competition III dataset IVa. Additionally, the EEG feature contribution in the ML classification model is reported using Explainable AI (XAI) tools, which provide insights into the individual contributions of the features in the predictions made by the model. By incorporating XAI techniques, the results of this study offer greater transparency and understanding of the relationship between the EEG features and the model’s predictions. The proposed method shows potential levels for better use in controlling diverse limb motor tasks to help people with limb impairments and support them while enhancing their quality of life.

Keywords