Symmetry (Jul 2021)

From Total Roman Domination in Lexicographic Product Graphs to Strongly Total Roman Domination in Graphs

  • Ana Almerich-Chulia,
  • Abel Cabrera Martínez,
  • Frank Angel Hernández Mira,
  • Pedro Martin-Concepcion

DOI
https://doi.org/10.3390/sym13071282
Journal volume & issue
Vol. 13, no. 7
p. 1282

Abstract

Read online

Let G be a graph with no isolated vertex and let N(v) be the open neighbourhood of v∈V(G). Let f:V(G)→{0,1,2} be a function and Vi={v∈V(G):f(v)=i} for every i∈{0,1,2}. We say that f is a strongly total Roman dominating function on G if the subgraph induced by V1∪V2 has no isolated vertex and N(v)∩V2≠∅ for every v∈V(G)\V2. The strongly total Roman domination number of G, denoted by γtRs(G), is defined as the minimum weight ω(f)=∑x∈V(G)f(x) among all strongly total Roman dominating functions f on G. This paper is devoted to the study of the strongly total Roman domination number of a graph and it is a contribution to the Special Issue “Theoretical Computer Science and Discrete Mathematics” of Symmetry. In particular, we show that the theory of strongly total Roman domination is an appropriate framework for investigating the total Roman domination number of lexicographic product graphs. We also obtain tight bounds on this parameter and provide closed formulas for some product graphs. Finally and as a consequence of the study, we prove that the problem of computing γtRs(G) is NP-hard.

Keywords