Curved and Layered Structures (Jul 2015)
Stochastic Thermal Post Buckling Response of Elastically Supported Laminated Piezoelectric Composite Plate Using Micromechanical approach
Abstract
In this paper, second order statistics of thermally induced post buckling response of elastically supported piezoelectric laminated composite plate using micromechanical approach is examined. A Co finite element has been used for deriving eigenvalue problem using higher order shear deformation theory (HSDT) with von-Karman nonlinearity. The uncertain system properties such as material properties of fiber and matrix of composite and piezoelectric, fiber volume fraction, plate thickness, lamination angle and foundation are modeled as random variables. The temperature field considered to be uniform temperature distributions through the plate thickness. A direct iterative based nonlinear finite element method combined with mean-centered second order perturbation technique (SOPT) is used to find the mean and coefficient of variance of the post buckling temperature. The effects of volume fraction, fiber orientation, and length to thickness ratio, aspect ratios, foundation parameters, position and number of piezoelectric layers, amplitude and boundary conditions with random system properties on the critical temperature are analysed. It is found that small amount of variations of uncertain system parameters of the composite plate significantly affect the initial and post buckling temperature of laminated composite plate. The results have been validated with independent Monte Carlo simulation (MCS) and those available in literature.
Keywords