International Journal of Digital Earth (Dec 2023)
Estimating PM2.5 concentrations in a central region of China using a three-stage model
Abstract
Owing to uneven environmental monitoring site distribution, there are significant spatial data gaps for concentrations of ambient fine particles with diameters ≤ 2.5 µm (PM2.5) obtained using traditional monitoring methods. Satellite products are an alternative data source for locations where monitoring sites are unavailable. The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) product has been widely used in PM2.5 assessment for years; however, it has obvious data gaps in winter. Here, the Visible Infrared Imaging Radiometer Suite (VIIRS) AOD was applied to supplement MODIS AOD data to obtain a fused AOD dataset. A three-stage model consisting of a corrected AOD model, mixed effects model, and geographically weighted regression model was developed and used with meteorological and vegetation factors to estimate PM2.5. Results showed overall model fitting by cross-validation (CV) with an R2 of 0.92, mean absolute error of 5.72 µg/m3, and root mean square error of 7.15 µg/m3. The combination of MODIS AOD and VIIRS AOD was a suitable method for enhancing AOD coverage. The CV R2 value of the three-stage model (0.92) was higher than that of the two-stage model (0.9). Hence, the three-stage model could achieve a better fit in estimating PM2.5 on a regional scale.
Keywords