Nature Communications (Sep 2021)

Reconfigurable Stochastic neurons based on tin oxide/MoS2 hetero-memristors for simulated annealing and the Boltzmann machine

  • Xiaodong Yan,
  • Jiahui Ma,
  • Tong Wu,
  • Aoyang Zhang,
  • Jiangbin Wu,
  • Matthew Chin,
  • Zhihan Zhang,
  • Madan Dubey,
  • Wei Wu,
  • Mike Shuo-Wei Chen,
  • Jing Guo,
  • Han Wang

DOI
https://doi.org/10.1038/s41467-021-26012-5
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 8

Abstract

Read online

Boltzmann Machines offer the potential of more efficient solutions to combinatorial problems compared to von Neumann computing architectures. Here, Yan et al introduce a stochastic memristor with dynamically tunable properties, a vital feature for the efficient implementation of a Boltzmann Machine.