Frontiers in Aging Neuroscience (Apr 2022)

Platelet Activating Factor Receptor Exaggerates Microglia-Mediated Microenvironment by IL10-STAT3 Signaling: A Novel Potential Biomarker and Target for Diagnosis and Treatment of Alzheimer’s Disease

  • Junxiu Liu,
  • Junxiu Liu,
  • Junxiu Liu,
  • Junxiu Liu,
  • Linchi Jiao,
  • Linchi Jiao,
  • Linchi Jiao,
  • Linchi Jiao,
  • Xin Zhong,
  • Xin Zhong,
  • Xin Zhong,
  • Xin Zhong,
  • Weifan Yao,
  • Weifan Yao,
  • Weifan Yao,
  • Weifan Yao,
  • Ke Du,
  • Ke Du,
  • Ke Du,
  • Ke Du,
  • Senxu Lu,
  • Senxu Lu,
  • Senxu Lu,
  • Senxu Lu,
  • Yuqiang Wu,
  • Yuqiang Wu,
  • Yuqiang Wu,
  • Yuqiang Wu,
  • Tianxin Ma,
  • Tianxin Ma,
  • Tianxin Ma,
  • Tianxin Ma,
  • Junhui Tong,
  • Junhui Tong,
  • Junhui Tong,
  • Junhui Tong,
  • Mingyue Xu,
  • Mingyue Xu,
  • Mingyue Xu,
  • Mingyue Xu,
  • Wenjuan Jiang,
  • Wenjuan Jiang,
  • Wenjuan Jiang,
  • Wenjuan Jiang,
  • Yubao Wang,
  • Miao He,
  • Miao He,
  • Miao He,
  • Miao He,
  • Wei Xin,
  • Wei Xin,
  • Mingyan Liu,
  • Mingyan Liu,
  • Mingyan Liu,
  • Mingyan Liu

DOI
https://doi.org/10.3389/fnagi.2022.856628
Journal volume & issue
Vol. 14

Abstract

Read online

BackgroundEarly diagnosis and effective intervention are the keys to delaying the progression of Alzheimer’s Disease (AD). Therefore, we aimed to identify new biomarkers for the early diagnosis of AD through bioinformatic analysis and elucidate the possible underlying mechanisms.Methods and ResultsGSE1297, GSE63063, and GSE110226 datasets from the GEO database were used to screen the highly differentially expressed genes. We identified a potential biomarker, Platelet activating factor receptor (PTAFR), significantly upregulated in the brain tissue, peripheral blood, and cerebrospinal fluid of AD patients. Furthermore, PTAFR levels in the plasma and brain tissues of APP/PS1 mice were significantly elevated. Simultaneously, PTAFR could mediate the inflammatory responses to exaggerate the microenvironment, particularly mediated by the microglia through the IL10-STAT3 pathway. In addition, PTAFR was a putative target of anti-AD compounds, including EGCG, donepezil, curcumin, memantine, and Huperzine A.ConclusionPTAFR was a potential biomarker for early AD diagnosis and treatment which correlated with the microglia-mediated microenvironment. It is an important putative target for the development of a novel strategy for clinical treatment and drug discovery for AD.

Keywords