Molecules (Oct 2023)

Nitrogen-Doped Graphene Quantum Dot-Passivated δ-Phase CsPbI<sub>3</sub>: A Water-Stable Photocatalytic Adjuvant to Degrade Rhodamine B

  • Yiting Gu,
  • Xin Du,
  • Feng Hua,
  • Jianfeng Wen,
  • Ming Li,
  • Tao Tang

DOI
https://doi.org/10.3390/molecules28217310
Journal volume & issue
Vol. 28, no. 21
p. 7310

Abstract

Read online

Inorganic halide perovskite CsPbI3 is highly promising in the photocatalytic field for its strong absorption of UV and visible light. Among the crystal phases of CsPbI3, the δ-phase as the most aqueous stability; however, directly using it in water is still not applicable, thus limiting its dye photodegradation applications in aqueous solutions. Via adopting nitrogen-doped graphene quantum dots (NGQDs) as surfactants to prepare δ-phase CsPbI3 nanocrystals, we obtained a water-stable material, NGQDs-CsPbI3. Such a material can be well dispersed in water for a month without obvious deterioration. High-resolution transmission electron microscopy and X-ray diffractometer characterizations showed that NGQDs-CsPbI3 is also a δ-phase CsPbI3 after NGQD coating. The ultraviolet-visible absorption spectra indicated that compared to δ-CsPbI3, NGQDs-CsPbI3 has an obvious absorption enhancement of visible light, especially near the wavelength around 521 nm. The good dispersity and improved visible-light absorption of NGQDs-CsPbI3 benefit their aqueous photocatalytic applications. NGQDs-CsPbI3 alone can photodegrade 67% rhodamine B (RhB) in water, while after compositing with TiO2, NGQDs-CsPbI3/TiO2 exhibits excellent visible-light photocatalytic ability, namely, it photodegraded 96% RhB in 4 h. The strong absorption of NGQDs-CsPbI3 in the visible region and effective transfer of photogenerated carriers from NGQDs-CsPbI3 to TiO2 play the key roles in dye photodegradation. We highlight NGQDs-CsPbI3 as a water-stable halide perovskite material and effective photocatalytic adjuvant.

Keywords