BMC Biotechnology (Nov 2024)
Fertility protective effects of Brillantaisia patula leaf extract against cyclophosphamide-induced ovarian damage in Wistar rats
Abstract
Abstract Background The primary indication of infertility is the incapacity to conceive, and in females, the majority of instances of female infertility stem from ovulation disorders. This study evaluated the female fertility-enhancing effects and safety of aqueous leaf extract of Brillantaisia patula (ALEBP) in a cyclophosphamide (CYP) model of sterility in Wistar rats. Method Sixty-six female rats randomly allotted to six groups (n = 11) were administered with the appropriate regimen for 21 days and then mated with male rats. Group 1 (control) received distilled water. Groups 2–6 were treated with a single dose (200 mgkg− 1 body weight) of cyclophosphamide intraperitoneally and, in addition, received the same volume (0.5 mL) of distilled water, 18, 36, 72 mgkg− 1 body weight of ALEBP and 200 mg per body weight of vitamin C orally. Mating lasted 11 days; on day 20, the female Wistar rats were sacrificed. Data were analysed using One-way Analysis of Variance (ANOVA) followed by Dunett’s posthoc analysis, and GraphPad (at p < 0.05). Results Results herein showed that ALEBP significantly (p < 0.05) increased the diminution in activities/levels of glutathione peroxidase (GPx), reduced glutathione (GSH), total antioxidant capacity (TAC), cholesterol, alkaline phosphatase (ALP), acid phosphatase (ACP), estrogen (ES), and luteinising hormone (LH) induced by cyclophosphamide. ALEBP further reversed the increased level of malondialdehyde (MDA), tumour necrosis factor-α (TNFα), interleukin 8 (IL-8), and follicle-stimulating hormone (FSH) caused by cyclophosphamide (p < 0.05). In addition, ALEBP, while it significantly increased the cyclophosphamide-induced reduction in the number of implantations in each animal, the total number of viable fetuses, the total number of corpora lutea, and the fertility index, also significantly reduced the number of fetal resorptions in each animal and pre-implantation loss that was increased by cyclophosphamide. Moreover, the cyclophosphamide-induced degenerative and necrotic changes in the ovarian cells and uterus were reversed by ALEBP. Conclusions Considered as a whole, the aqueous leaf extract of Brillantaisia patula reversed oxidative stress and inflammatory side effects of cyclophosphamide, preserving ovarian function and fertility in the rats. This may suggest its exploration as a safe agent against toxic side effects of chemotherapy and fertility-related disorders of the uterus and ovary.
Keywords