Applied Sciences (Aug 2022)

Multi-Objective Hybrid Flower Pollination Resource Consolidation Scheme for Large Cloud Data Centres

  • Mohammed Joda Usman,
  • Lubna A. Gabralla,
  • Ahmed Aliyu,
  • Danlami Gabi,
  • Haruna Chiroma

DOI
https://doi.org/10.3390/app12178516
Journal volume & issue
Vol. 12, no. 17
p. 8516

Abstract

Read online

Cloud Computing has rapidly emerged as a successful paradigm for providing Information and Communication Technology (ICT) infrastructure. Resource allocation is used to execute user applications in the form of requests for consolidated resources in order to minimize energy consumption and violation of the Service Level Agreement (SLA) for large-scale data centers resource utilization. The energy consumption is usually caused due to local entrapment and violation of SLA during resource assigning and execution. Several researchers have proposed solutions to reduce local entrapments and violations of SLA, to minimize the energy consumption of the entire data center. However, strategies employed in their solutions face entrapment in either local searches or at the global search level with a certain level of SLA violation. In this light, a Multi-Objective Hybrid Flower Pollination Resource Consolidation (MOH-FPRC) scheme for efficient and optimal resource consolidation of data center resources is put forward. The Local Neighborhood Search (LNS) algorithm has been employed for addressing entrapment at the local search level, while the prominent flower pollination algorithm is used to solve the problem of entrapment at the global search level. This, in turn, reduces the energy consumption of the data centers. In addition, clustering strategies have been introduced with a robust migration mechanism to minimize the violation of SLA while also satisfying minimum energy consumption. The simulation results using the MultiRecCloudSim simulator have shown that our proposed MOH-FPRC demonstrates an improved performance on the data center energy consumption, resource utilization, and SLA violation with a 20.5% decrease, 23.9% increase, and 13.5% reduction, respectively, as compared with the benchmarked algorithms. The proposed scheme has proven its efficiency in minimizing energy consumption while at the same time improving the data center resource allocation with minimum SLA violations.

Keywords