PLoS ONE (Jan 2014)

Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani.

  • Jackeline L Pereira,
  • Rayner M L Queiroz,
  • Sébastien O Charneau,
  • Carlos R Felix,
  • Carlos A O Ricart,
  • Francilene Lopes da Silva,
  • Andrei Stecca Steindorff,
  • Cirano J Ulhoa,
  • Eliane F Noronha

DOI
https://doi.org/10.1371/journal.pone.0098234
Journal volume & issue
Vol. 9, no. 5
p. e98234

Abstract

Read online

The present study was carried out to evaluate the ability of Trichoderma harzianum (ALL 42-isolated from Brazilian Cerrado soil) to promote common bean growth and to modulate its metabolism and defense response in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani using a proteomic approach. T. harzianum was able to promote common bean plants growth as shown by the increase in root/foliar areas and by size in comparison to plants grown in its absence. The interaction was shown to modulate the expression of defense-related genes (Glu1, pod3 and lox1) in roots of P. vulgaris. Proteomic maps constructed using roots and leaves of plants challenged or unchallenged by T. harzianum and phytopathogenic fungi showed differences. Reference gels presented differences in spot distribution (absence/presence) and relative volumes of common spots (up or down-regulation). Differential spots were identified by peptide fingerprinting MALDI-TOF mass spectrometry. A total of 48 identified spots (19 for leaves and 29 for roots) were grouped into protein functional classes. For leaves, 33%, 22% and 11% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. For roots, 17.2%, 24.1% and 10.3% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively.