Communications Physics (Feb 2021)
Deviations from Taylor’s frozen hypothesis and scaling laws in inhomogeneous jet flows
Abstract
Turbulent flows have been the subject of intensive studies, but experimental investigations are lacking due to the need for high-frequency and high-resolution methods to probe small scale structure and time evolution. The authors report high repetition rate, high spatial resolution, particle image velocimetry measurements of a turbulent, circular jet flow, revealing that the turbulent jet measured is inhomogeneous and anisotropic and demonstrating that Taylor’s frozen turbulence hypothesis fails to generalize for inhomogeneous jet flows.