Scientific Reports (Sep 2022)

Development of spatially variant photonic crystals to control light in the near-infrared spectrum

  • Andrew Volk,
  • Amit Rai,
  • Imad Agha,
  • Tamara E. Payne,
  • Jimmy E. Touma,
  • Rudra Gnawali

DOI
https://doi.org/10.1038/s41598-022-20252-1
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Spatially Variant Photonic Crystals (SVPCs) have shown the ability to control the propagation and direction of light in the near-infrared spectrum. Using a novel approach for simplified modeling and fabrication techniques, we designed unique, spatially-varied, unit-cell structures to develop photonic crystals that maintain self-collimation and direction of light for desired beam tuning applications. The finite-difference time-domain technique is used to predict the self-collimation and beam-bending capabilities of our SVPCs. These SVPC designs and the simulation results are verified in laboratory testing. The experimental evidence shows that two-dimensional SVPCs can achieve self-collimation and direct light through sharp bends. The simplicity and quality of these designs show their potential for widespread implementation in modern devices. These SVPCs will serve as a unique solution to optical systems for optical computing, multiplexing, data transfer, and more.