Advances in Mathematical Physics (Jan 2020)
Three Types Generalized Zn-Heisenberg Ferromagnet Models
Abstract
By taking values in a commutative subalgebra gln,C, we construct a new generalized Zn-Heisenberg ferromagnet model in (1+1)-dimensions. The corresponding geometrical equivalence between the generalized Zn-Heisenberg ferromagnet model and Zn-mixed derivative nonlinear Schrödinger equation has been investigated. The Lax pairs associated with the generalized systems have been derived. In addition, we construct the generalized Zn-inhomogeneous Heisenberg ferromagnet model and Zn-Ishimori equation in (2+1)-dimensions. We also discuss the integrable properties of the multi-component systems. Meanwhile, the generalized Zn-nonlinear Schrödinger equation, Zn-Davey–Stewartson equation and their Lax representation have been well studied.