Electronic Journal of Qualitative Theory of Differential Equations (Jun 2005)

On the unique continuation property for a nonlinear dispersive system

  • A. Kozakevicius,
  • Octavio Paulo Vera Villagran

DOI
https://doi.org/10.14232/ejqtde.2005.1.14
Journal volume & issue
Vol. 2005, no. 14
pp. 1 – 23

Abstract

Read online

We solve the following problem: If $(u,\,v)=(u(x,\,t),\,v(x,\,t))$ is a solution of the Dispersive Coupled System with $t_{1}<t_{2}$ which are sufficiently smooth and such that: $\operatorname{supp}u(\,.\,,\,t_{j})\subset (a,\,b)\,$ and $\,\operatorname{supp}v(\,.\,,\, t_{j})\subset (a,\,b),\,-\,\infty<a<b<\infty ,\,$ $j=1,\,2.\,$ Then $u\equiv 0$ and $v\equiv 0.$