Engineering (Jan 2024)

High Spatial Resolution Ozone Profiles Retrieved from the First Chinese Ultraviolet–Visible Hyperspectral Satellite Instrument

  • Fei Zhao,
  • Cheng Liu,
  • Qihou Hu,
  • Congzi Xia,
  • Chengxin Zhang,
  • Wenjing Su

Journal volume & issue
Vol. 32
pp. 106 – 115

Abstract

Read online

Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport, as well as when analyzing the physical and chemical properties of the atmosphere. One of the most effective ways to obtain high spatial resolution ozone profiles is through satellite observations. The Environmental Trace Gases Monitoring Instrument (EMI) deployed on the Gaofen-5 satellite is the first Chinese ultraviolet–visible hyperspectral spectrometer. However, retrieving ozone profiles using backscattered radiance values measured by the EMI is challenging due to unavailable measurement errors and a low signal-to-noise ratio. The algorithm developed for the Tropospheric Monitoring Instrument did not allow us to retrieve 87% of the EMI pixels. Therefore, we developed an algorithm specific to the characteristics of the EMI. The fitting residuals are smaller than 0.3% in most regions. The retrieved ozone profiles were in good agreement with ozonesonde data, with maximum mean biases of 20% at five latitude bands. By applying EMI averaging kernels to the ozonesonde profiles, the integrated stratospheric column ozone and tropospheric column ozone also showed excellent agreement with ozonesonde data. The lower layers (0–7.5 km) of the EMI ozone profiles reflected the seasonal variation in surface ozone derived from the China National Environmental Monitoring Center (CNEMC). However, the upper layers (9.7–16.7 km) of the ozone profiles show different trends, with the ozone peak occurring at an altitude of 9.7–16.7 km in March, 2019. A stratospheric intrusion event in central China from August 11 to 15, 2019, is captured using the EMI ozone profiles, potential vorticity data, and relative humidity data. The increase in the CNEMC ozone concentration showed that downward transport enhanced surface ozone pollution.

Keywords