Physics Letters B (Sep 2019)
The κ-(A)dS noncommutative spacetime
Abstract
The (3+1)-dimensional κ-(A)dS noncommutative spacetime is explicitly constructed by quantizing its semiclassical counterpart, which is the κ-(A)dS Poisson homogeneous space. This turns out to be the only possible generalization of the well-known κ-Minkowski spacetime to the case of non-vanishing cosmological constant, under the condition that the time translation generator of the corresponding quantum (A)dS algebra is primitive. Moreover, the κ-(A)dS noncommutative spacetime is shown to have a quadratic subalgebra of local spatial coordinates whose first-order brackets in terms of the cosmological constant parameter define a quantum sphere, while the commutators between time and space coordinates preserve the same structure of the κ-Minkowski spacetime. When expressed in ambient coordinates, the quantum κ-(A)dS spacetime is shown to be defined as a noncommutative pseudosphere. Keywords: Quantum groups, Cosmological constant, (Anti-)de Sitter, Kappa-deformation, Noncommutative spacetimes, Quantization