Pharmaceutics (Dec 2021)

A Physiologically Based Pharmacokinetic Model for In Vivo Alpha Particle Generators Targeting Neuroendocrine Tumors in Mice

  • Nouran R. R. Zaid,
  • Peter Kletting,
  • Gordon Winter,
  • Vikas Prasad,
  • Ambros J. Beer,
  • Gerhard Glatting

DOI
https://doi.org/10.3390/pharmaceutics13122132
Journal volume & issue
Vol. 13, no. 12
p. 2132

Abstract

Read online

In vivo alpha particle generators have great potential for the treatment of neuroendocrine tumors in alpha-emitter-based peptide receptor radionuclide therapy (α-PRRT). Quantitative pharmacokinetic analyses of the in vivo alpha particle generator and its radioactive decay products are required to address concerns about the efficacy and safety of α-PRRT. A murine whole-body physiologically based pharmacokinetic (PBPK) model was developed for 212Pb-labeled somatostatin analogs (212Pb-SSTA). The model describes pharmacokinetics of 212Pb-SSTA and its decay products, including specific and non-specific glomerular and tubular uptake. Absorbed dose coefficients (ADC) were calculated for bound and unbound radiolabeled SSTA and its decay products. Kidneys received the highest ADC (134 Gy/MBq) among non-target tissues. The alpha-emitting 212Po contributes more than 50% to absorbed doses in most tissues. Using this model, it is demonstrated that α-PRRT based on 212Pb-SSTA results in lower absorbed doses in non-target tissue than α-PRRT based on 212Bi-SSTA for a given kidneys absorbed dose. In both approaches, the energies released in the glomeruli and proximal tubules account for 54% and 46%, respectively, of the total energy absorbed in kidneys. The 212Pb-SSTA-PBPK model accelerates the translation from bench to bedside by enabling better experimental design and by improving the understanding of the underlying mechanisms.

Keywords