Sensors (Jun 2023)

Testing the Effect of Bathymetric Data Reduction on the Shape of the Digital Bottom Model

  • Wiktor Mujta,
  • Marta Wlodarczyk-Sielicka,
  • Andrzej Stateczny

DOI
https://doi.org/10.3390/s23125445
Journal volume & issue
Vol. 23, no. 12
p. 5445

Abstract

Read online

Depth data and the digital bottom model created from it are very important in the inland and coastal water zones studies and research. The paper undertakes the subject of bathymetric data processing using reduction methods and examines the impact of data reduction according to the resulting representations of the bottom surface in the form of numerical bottom models. Data reduction is an approach that is meant to reduce the size of the input dataset to make it easier and more efficient for analysis, transmission, storage and similar. For the purposes of this article, test datasets were created by discretizing a selected polynomial function. The real dataset, which was used to verify the analyzes, was acquired using an interferometric echosounder mounted on a HydroDron-1 autonomous survey vessel. The data were collected in the ribbon of Lake Klodno, Zawory. Data reduction was conducted in two commercial programs. Three equal reduction parameters were adopted for each algorithm. The research part of the paper presents the results of the conducted analyzes of the reduced bathymetric datasets based on the visual comparison of numerical bottom models, isobaths, and statistical parameters. The article contains tabular results with statistics, as well as the spatial visualization of the studied fragments of numerical bottom models and isobaths. This research is being used in the course of work on an innovative project that aims to develop a prototype of a multi-dimensional and multi-temporal coastal zone monitoring system using autonomous, unmanned floating platforms at a single survey pass.

Keywords