Plants (Jun 2024)

Soil Acidification Can Be Improved under Different Long-Term Fertilization Regimes in a Sweetpotato–Wheat Rotation System

  • Huan Zhang,
  • Lei Wang,
  • Weiguo Fu,
  • Cong Xu,
  • Hui Zhang,
  • Xianju Xu,
  • Hongbo Ma,
  • Jidong Wang,
  • Yongchun Zhang

DOI
https://doi.org/10.3390/plants13131740
Journal volume & issue
Vol. 13, no. 13
p. 1740

Abstract

Read online

Soil acidification is a significant form of agricultural soil degradation, which is accelerated by irrational fertilizer application. Sweetpotato and wheat rotation has emerged as an important rotation system and an effective strategy to optimize nutrient cycling and enhance soil fertility in hilly areas, which is also a good option to improve soil acidification and raise soil quality. Studying the effects of different fertilization regimes on soil acidification provides crucial data for managing it effectively. An eight-year field experiment explored seven fertilizer treatments: without fertilization (CK), phosphorus (P) and potassium (K) fertilization (PK), nitrogen (N) and K fertilization (NK), NP fertilization (NP), NP with K chloride fertilization (NPK1), NP with K sulfate fertilization (NPK2), and NPK combined with organic fertilization (NPKM). This study focused on the soil acidity, buffering capacity, and related indicators. After eight years of continuous fertilization in the sweetpotato–wheat rotation, all the treatments accelerated the soil acidification. Notably, N fertilization reduced the soil pH by 1.30–1.84, whereas N-deficient soil showed minimal change. Organic fertilizer addition resulted in the slowest pH reduction among the N treatments. Both N-deficient (PK) and organic fertilizer addition (NPKM) significantly increased the soil cation exchange capacity (CEC) by 8.83% and 6.55%, respectively, compared to CK. Similar trends were observed for the soil-buffering capacity (pHBC). NPK2 increased the soil K+ content more effectively than NPK1. NPKM reduced the sodium and magnesium content compared to CK, with the highest magnesium content among the treatments at 1.60 cmol·kg−1. Regression tree analysis identified the N input and soil magnesium and calcium content as the primary factors influencing the pHBC changes. Structural equation modeling showed that the soil pH is mainly influenced by the soil ammonium N content and pHBC, with coefficients of −0.28 and 0.29, respectively. Changes in the soil pH in the sweetpotato–wheat rotation were primarily associated with the pHBC and N input, where the CEC content emerged as the main factor, modulated by magnesium and calcium. Long-term organic fertilization enhances the soil pHBC and CEC, slowing the magnesium reduction and mitigating soil acidification in agricultural settings.

Keywords