Alexandria Engineering Journal (Oct 2021)

Covid-19 detection via deep neural network and occlusion sensitivity maps

  • Muhammad Aminu,
  • Noor Atinah Ahmad,
  • Mohd Halim Mohd Noor

Journal volume & issue
Vol. 60, no. 5
pp. 4829 – 4855

Abstract

Read online

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.

Keywords