Plants (Jun 2023)

Testing a Method Based on an Improved UNet and Skeleton Thinning Algorithm to Obtain Branch Phenotypes of Tall and Valuable Trees Using <i>Abies beshanzuensis</i> as the Research Sample

  • Jiahui Shen,
  • Lihong Zhang,
  • Laibang Yang,
  • Hao Xu,
  • Sheng Chen,
  • Jingyong Ji,
  • Siqi Huang,
  • Hao Liang,
  • Chen Dong,
  • Xiongwei Lou

DOI
https://doi.org/10.3390/plants12132444
Journal volume & issue
Vol. 12, no. 13
p. 2444

Abstract

Read online

Sudden changes in the morphological characteristics of trees are closely related to plant health, and automated phenotypic measurements can help improve the efficiency of plant health monitoring, and thus aid in the conservation of old and valuable tress. The irregular distribution of branches and the influence of the natural environment make it very difficult to monitor the status of branches in the field. In order to solve the problem of branch phenotype monitoring of tall and valuable plants in the field environment, this paper proposes an improved UNet model to achieve accurate extraction of trunk and branches. This paper also proposes an algorithm that can measure the branch length and inclination angle by using the main trunk and branches separated in the previous stage, finding the skeleton line of a single branch via digital image morphological processing and the Zhang–Suen thinning algorithm, obtaining the number of pixel points as the branch length, and then using Euclidean distance to fit a straight line to calculate the inclination angle of each branch. These were carried out in order to monitor the change in branch length and inclination angle and to determine whether plant branch breakage or external stress events had occurred. We evaluated the method on video images of Abies beshanzuensis, and the experimental results showed that the present algorithm has more excellent performance at 94.30% MIoU as compared with other target segmentation algorithms. The coefficient of determination (R2) is higher than 0.89 for the calculation of the branch length and inclination angle. In summary, the algorithm proposed in this paper can effectively segment the branches of tall plants and measure their length and inclination angle in a field environment, thus providing an effective method to monitor the health of valuable plants.

Keywords