G3: Genes, Genomes, Genetics (Aug 2019)

Systematic Analysis of Metabolic Pathway Distributions of Bacterial Energy Reserves

  • Liang Wang,
  • Jianye Yang,
  • Yue Huang,
  • Qinghua Liu,
  • Yaping Xu,
  • Xue Piao,
  • Michael J. Wise

DOI
https://doi.org/10.1534/g3.119.400123
Journal volume & issue
Vol. 9, no. 8
pp. 2489 – 2496

Abstract

Read online

Previous bioinformatics studies have linked gain or loss of energy reserves with host-pathogen interactions and bacterial virulence based on a comparatively small number of bacterial genomes or proteomes. Thus, understanding the theoretical distribution patterns of energy reserves across bacterial species could provide a shortcut route to look into bacterial lifestyle and physiology. So far, five major energy reserves have been identified in bacteria due to their capacity to support bacterial persistence under nutrient deprivation conditions. These include polyphosphate (polyP), glycogen, wax ester (WE), triacylglycerol (TAG), and polyhydroxyalkanoates (PHAs). Although the enzymes related with metabolism of energy reserves are well understood, there is a lack of systematic investigations into the distribution of bacterial energy reserves from an evolutionary point of view. In this study, we sourced 8282 manually reviewed bacterial reference proteomes and combined a set of hidden Markov sequence models (HMMs) to search homologs of key enzymes related with the metabolism of energy reserves. Our results revealed that specific pathways like trehalose-related glycogen metabolism and enzymes such as wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) are mainly restricted within specific types of bacterial groups, which provides evolutionary insights into the understanding of their origins and functions. In addition, the study also confirms that loss of energy reserves like polyP metabolism absence in Mollicutes is correlated with bacterial genome reduction. Through this analysis, a clearer picture about the metabolism of energy reserves in bacteria is presented, which could serve as a guide for further theoretical and experimental analyses of bacterial energy metabolism.

Keywords