Gels (Aug 2023)
Mesoporous Starch Cryoaerogel Material as an Emerging Platform for Oral Drug Delivery: Synthesis and In Vitro Evaluation
Abstract
In this study, a starch cryoaerogel formulation was developed as a carrier for poorly water-soluble drugs, like atorvastatin. Cryoaerogels were generated through a sol–gel method combined with a freeze-drying technique, and atorvastatin was incorporated into the obtained mesoporous systems during the solvent exchange stage. The formulated drug-loaded polymer structures were characterized in terms of their physicochemical properties, solid-state behavior, and cytotoxicity. They had a pore size of 27.56 nm and a drug loading size of 38.60%. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) analyses indicated that atorvastatin was successfully incorporated into the cryoaerogel pores. The amorphous nature of the loaded drug was confirmed via X-ray diffraction (XRD). Furthermore, after the atorvastatin incorporation into the cryogel, the volume of nitrogen adsorbed on one gram of cryoaerogel (Vm), as well as the specific surface area (aBET) were reduced. The comparison between the drug release profiles of crystalline atorvastatin and the loaded formulation of atorvastatin showed that by including the drug into the pores of the developed cryoaerogel matrix its solubility was significantly improved—the time for the dissolution of 30% pure atorvastatin (t30%) was approximately 4 h, whereas the determined t30% for the formulated cryoaerogels was only 1 h. Moreover, the data from the MTT assay illustrated that the designed cryoaerogel could be used as a safe oral atorvastatin delivery system. According to obtained results, it could be concluded that the starch cryoaerogel formulation is a promising candidate for oral delivery of poorly water-soluble therapeutic agents.
Keywords