Актуальні проблеми духовності (Dec 2023)

On explication of concept of quantum entanglement

  • Oleksandr Tiaglo

DOI
https://doi.org/10.31812/apm.7687
Journal volume & issue
no. 24

Abstract

Read online

Genesis of concept of quantum entanglement is explored in context of the controversy regarding the Einstein-Podolsky-Rosen thought experiment and, more broadly, the debate about the completeness of quantum mechanics. Taking into account the concepts of mixture and statistical operator, which were introduced by von Neumann and borrowed by Schrödinger, it is argued that the concept of entanglement is not necessary in quantum physics. The in-depth comparative analysis of some Schrödinger’s, von Neumann’s, and Landau’s theoretical works concludes that presentation of a complex quantum system as a quasi-mechanical aggregate was gradually being overcome. Its objective wholeness was being substantiated. Therefore, wholeness is inherent not only to quantum phenomena, but also to quantum systems themselves. Complete explanation of the Einstein-Podolsky-Rosen thought experiment requires consideration of both these appearances of the quantum wholeness. Therefore, main result of the long-term discussion of the EPR thought experiment is the exhaustive recognition of wholeness of quantum reality. Study of "the rise and fall" of the quantum entanglement concept, as well as Bohr's substantiation of the concept of wholeness of phenomenon, confirm irreducibility of the Universe to a set of Democritus' atoms and their combinations, aggregates. Moreover, all these enrich picture of the Universe as an undivided wholeness, which is revolutionary replacement for the still popular worldview in the spirit of Democritus. Analysis of contemporary use of the concept of entanglement finds out that, on the one hand, it grasps undividedness, wholeness of complex quantum systems of various kinds and, thus, is an instrument of rational holism. However, on the other hand, the concept of entanglement was call into life within the framework of imagining quantum systems as quasi-classical aggregates. Until now, this results in a shallow everyday-descriptive understanding of it, in principally limited attempts to model or think holistic systems as a set of separate objects, albeit in any entangled states.

Keywords