Frontiers in Behavioral Neuroscience (Sep 2016)

Dorsal Raphe Nucleus Down-Regulates Medial Prefrontal Cortex during Experience of Flow

  • Martin Ulrich,
  • Johannes Keller,
  • Georg Grön

DOI
https://doi.org/10.3389/fnbeh.2016.00169
Journal volume & issue
Vol. 10

Abstract

Read online

Previous neuroimaging studies have suggested that the experience of flow aligns with a relative increase in activation of the dorsal raphe nucleus, and relative activation decreases of the medial prefrontal cortex and of the amygdala. In the present study, Dynamic Causal Modeling (DCM) was used to explore effective connectivity between those brain regions. To test our hypothesis that the dorsal raphe nucleus causally down-regulates activity of the medial prefrontal cortex and/or of the amygdala, 23 healthy male students solved mental arithmetic tasks of varying difficulty during functional magnetic resonance imaging. A flow condition, with task demands automatically balanced with participants’ skill level, was compared with conditions of boredom and overload. DCM models were constructed modeling full reciprocal endogenous connections between the dorsal raphe nucleus, the medial prefrontal cortex, the amygdala, and the calcarine. The calcarine was included to allow sensory input to enter the system. Experimental conditions were modeled as exerting modulatory effects on various possible connections between the dorsal raphe nucleus, the medial prefrontal cortex, and the amygdala, but not on self-inhibitory connections, yielding a total of 64 alternative DCM models. Model space was partitioned into eight families based on commonalities in the arrangement of the modulatory effects. Random effects Bayesian Model Selection was applied to identify a possible winning family (and model). Although Bayesian Model Selection revealed a clear winning family, an outstanding winning model could not be identified. Therefore, Bayesian Model Averaging was performed over models within the winning family to obtain representative DCM parameters for subsequent analyses to test our hypothesis. In line with our expectations, Bayesian averaged parameters revealed stronger down-regulatory influence of the dorsal raphe nucleus on the medial prefrontal cortex when participants experienced flow relative to control conditions. In addition, these condition-dependent modulatory effects significantly predicted participants’ experienced degree of flow. The amygdala was down-regulated irrespective of condition. The present results suggest a causal role for the dorsal raphe nucleus in modulating the medial prefrontal cortex, contributing to the experience of flow.

Keywords