Sensors (Oct 2024)
A Stacked Neural Network Model for Damage Localization
Abstract
Traditional vibration-based damage detection methods often involve human intervention in decision-making, therefore being time-consuming and error-prone. In this study, we propose using Artificial Neural Networks (ANNs) to detect patterns in the structural response and create accurate predictions. The features extracted from the response signal are the Relative Frequency Shifts (RFSs) of the first eight weak-axis bending vibration modes, and the predictions refer to the damage location. To increase the accuracy of the predictions, we propose a novel stacked neural network approach, capable of detecting damage locations with high accuracy. The dataset used for training involves, as input data, the RFSs calculated with an original method for numerous damage locations and severities. The following models were used as building blocks for our stacked approach: Multilayer Perceptron, Recurrent Neural Network, Long Short-term Memory, and Gated Recurrent Units. The entire beam was thus split into segments and each network was trained in this stacked model on one beam segment. All results obtained with the models are also compared to a standard neural network trained on the entire beam. The results obtained show that the model that performs the best contains 14 stacked two-layer feedforward networks.
Keywords