Molecular Autism (Jun 2023)
Exploratory analysis of L1 retrotransposons expression in autism
Abstract
Abstract Background Autism spectrum disorder (ASD) is a set of highly heterogeneous neurodevelopmental diseases whose genetic etiology is not completely understood. Several investigations have relied on transcriptome analysis from peripheral tissues to dissect ASD into homogenous molecular phenotypes. Recently, analysis of changes in gene expression from postmortem brain tissues has identified sets of genes that are involved in pathways previously associated with ASD etiology. In addition to protein-coding transcripts, the human transcriptome is composed by a large set of non-coding RNAs and transposable elements (TEs). Advancements in sequencing technologies have proven that TEs can be transcribed in a regulated fashion, and their dysregulation might have a role in brain diseases. Methods We exploited published datasets comprising RNA-seq data from (1) postmortem brain of ASD subjects, (2) in vitro cell cultures where ten different ASD-relevant genes were knocked out and (3) blood of discordant siblings. We measured the expression levels of evolutionarily young full-length transposable L1 elements and characterized the genomic location of deregulated L1s assessing their potential impact on the transcription of ASD-relevant genes. We analyzed every sample independently, avoiding to pool together the disease subjects to unmask the heterogeneity of the molecular phenotypes. Results We detected a strong upregulation of intronic full-length L1s in a subset of postmortem brain samples and in in vitro differentiated neurons from iPSC knocked out for ATRX. L1 upregulation correlated with an high number of deregulated genes and retained introns. In the anterior cingulate cortex of one subject, a small number of significantly upregulated L1s overlapped with ASD-relevant genes that were significantly downregulated, suggesting the possible existence of a negative effect of L1 transcription on host transcripts. Limitations Our analyses must be considered exploratory and will need to be validated in bigger cohorts. The main limitation is given by the small sample size and by the lack of replicates for postmortem brain samples. Measuring the transcription of locus-specific TEs is complicated by the repetitive nature of their sequence, which reduces the accuracy in mapping sequencing reads to the correct genomic locus. Conclusions L1 upregulation in ASD appears to be limited to a subset of subjects that are also characterized by a general deregulation of the expression of canonical genes and an increase in intron retention. In some samples from the anterior cingulate cortex, L1s upregulation seems to directly impair the expression of some ASD-relevant genes by a still unknown mechanism. L1s upregulation may therefore identify a group of ASD subjects with common molecular features and helps stratifying individuals for novel strategies of therapeutic intervention.
Keywords