Perovskite photovoltaic devices added with tin (Sn) dichloride and copper (Cu) bromide were fabricated and characterized. The thin film devices were prepared by an ordinary spin-coating technique using an air blowing method in ambient air. A decaphenylcyclopentasilane layer was coated at the surface of perovskite layer and annealed at a high temperature of 190 °C. Conversion efficiencies and short-circuit current densities were improved for devices added with Sn and Cu compared with the standard devices. The energy gap of the perovskite crystal decreased through the Sn addition, which was also confirmed by first-principles calculations.