JOR Spine (Mar 2024)

Targeted screening of inflammatory mediators in spontaneous degenerative disc disease in dogs reveals an upregulation of the tumor necrosis superfamily

  • Thomas Bitterli,
  • David Schmid,
  • Ladina Ettinger,
  • Olga Krupkova,
  • Frances C. Bach,
  • Marianna A. Tryfonidou,
  • Björn P. Meij,
  • Antonio Pozzi,
  • Frank Steffen,
  • Karin Wuertz‐Kozak,
  • Lucas A. Smolders

DOI
https://doi.org/10.1002/jsp2.1292
Journal volume & issue
Vol. 7, no. 1
pp. n/a – n/a

Abstract

Read online

Abstract Background The regulation of inflammatory mediators in the degenerating intervertebral disc (IVD) and corresponding ligamentum flavum (LF) is a topic of emerging interest. The study aimed to investigate the expression of a broad array of inflammatory mediators in the degenerated LF and IVD using a dog model of spontaneous degenerative disc disease (DDD) to determine potential treatment targets. Methods LF and IVD tissues were collected from 22 normal dogs (Pfirrmann grades I and II) and 18 dogs affected by DDD (Pfirrmann grades III and IV). A qPCR gene array was used to investigate the expression of 80 inflammatory genes for LF and IVD tissues, whereafter targets of interest were investigated in additional tissue samples using qPCR, western blot (WB), and immunohistochemistry. Results Tumor necrosis factor superfamily (TNFSF) signaling was identified as a regulated pathway in DDD, based on the significant regulation (n‐fold ± SD) of various TNFSF members in the degenerated IVD, including nerve growth factor (NGF; −8 ± 10), CD40LG (464 ± 442), CD70 (341 ± 336), TNFSF Ligand 10 (9 ± 8), and RANKL/TNFSF Ligand 11 (85 ± 74). In contrast, TNFSF genes were not significantly affected in the degenerated LF compared to the control LF. Protein expression of NGF (WB) was significantly upregulated in both the degenerated LF (4.4 ± 0.5) and IVD (11.3 ± 5.6) compared to the control group. RANKL immunopositivity was significantly upregulated in advanced stages of degeneration (Thompson grades IV and V) in the nucleus pulposus and annulus fibrosus of the IVD, but not in the LF. Conclusions DDD involves a significant upregulation of various TNFSF members, with tissue‐specific expression profiles in LF and IVD tissues. The differential involvement of TNFSF members within multiple spinal tissues from the same individual provides new insights into the inflammatory processes involved in DDD and may provide a basis to formulate hypotheses for the determination of potential treatment targets.

Keywords