Hybrid quantum thermal machines with dynamical couplings
Fabio Cavaliere,
Luca Razzoli,
Matteo Carrega,
Giuliano Benenti,
Maura Sassetti
Affiliations
Fabio Cavaliere
Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
Luca Razzoli
Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy
Matteo Carrega
CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
Giuliano Benenti
Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy; NEST, Istituto Nanoscienze-CNR, I-56126 Pisa, Italy; Corresponding author
Maura Sassetti
Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
Summary: Quantum thermal machines can perform useful tasks, such as delivering power, cooling, or heating. In this work, we consider hybrid thermal machines, that can execute more than one task simultaneously. We characterize and find optimal working conditions for a three-terminal quantum thermal machine, where the working medium is a quantum harmonic oscillator, coupled to three heat baths, with two of the couplings driven periodically in time. We show that it is possible to operate the thermal machine efficiently, in both pure and hybrid modes, and to switch between different operational modes simply by changing the driving frequency. Moreover, the proposed setup can also be used as a high-performance transistor, in terms of output–to–input signal and differential gain. Owing to its versatility and tunability, our model may be of interest for engineering thermodynamic tasks and for thermal management in quantum technologies.