Atmospheric Chemistry and Physics (Feb 2022)
The <i>Fires, Asian, and Stratospheric Transport</i>–Las Vegas Ozone Study (<i>FAST</i>-LVOS)
- A. O. Langford,
- C. J. Senff,
- C. J. Senff,
- R. J. Alvarez II,
- K. C. Aikin,
- K. C. Aikin,
- S. Baidar,
- S. Baidar,
- T. A. Bonin,
- T. A. Bonin,
- T. A. Bonin,
- W. A. Brewer,
- J. Brioude,
- S. S. Brown,
- S. S. Brown,
- J. D. Burley,
- D. J. Caputi,
- S. A. Conley,
- P. D. Cullis,
- P. D. Cullis,
- Z. C. J. Decker,
- Z. C. J. Decker,
- S. Evan,
- G. Kirgis,
- G. Kirgis,
- G. Kirgis,
- M. Lin,
- M. Lin,
- M. Pagowski,
- M. Pagowski,
- J. Peischl,
- J. Peischl,
- I. Petropavlovskikh,
- I. Petropavlovskikh,
- R. B. Pierce,
- T. B. Ryerson,
- T. B. Ryerson,
- S. P. Sandberg,
- C. W. Sterling,
- C. W. Sterling,
- C. W. Sterling,
- A. M. Weickmann,
- A. M. Weickmann,
- L. Zhang,
- L. Zhang,
- L. Zhang
Affiliations
- A. O. Langford
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- C. J. Senff
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- C. J. Senff
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- R. J. Alvarez II
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- K. C. Aikin
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- K. C. Aikin
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- S. Baidar
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- S. Baidar
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- T. A. Bonin
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- T. A. Bonin
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- T. A. Bonin
- now at: MIT Lincoln Laboratory, Lexington, MA, USA
- W. A. Brewer
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- J. Brioude
- Laboratoire de l'Atmosphere et des Cyclones (LACy), UMR 8105, CNRS, Université de La Réunion, Météo-France, Saint-Denis, La Reunion, France
- S. S. Brown
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- S. S. Brown
- Department of Chemistry, University of Colorado, Boulder, CO, USA
- J. D. Burley
- Department of Chemistry, St. Mary's College of California, Moraga, CA, USA
- D. J. Caputi
- Department of Land, Air, and Water Resources, University of California, Davis, CA, USA
- S. A. Conley
- Scientific Aviation, Inc., Boulder, Colorado, USA
- P. D. Cullis
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- P. D. Cullis
- NOAA Global Monitoring Laboratory, Boulder, CO, USA
- Z. C. J. Decker
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- Z. C. J. Decker
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- S. Evan
- Laboratoire de l'Atmosphere et des Cyclones (LACy), UMR 8105, CNRS, Université de La Réunion, Météo-France, Saint-Denis, La Reunion, France
- G. Kirgis
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- G. Kirgis
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- G. Kirgis
- now at: 2210 Kirby Ave, Chattanooga, TN, USA
- M. Lin
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
- M. Lin
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
- M. Pagowski
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- M. Pagowski
- NOAA Global Systems Laboratory, Boulder, CO, USA
- J. Peischl
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- J. Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- I. Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- I. Petropavlovskikh
- NOAA Global Monitoring Laboratory, Boulder, CO, USA
- R. B. Pierce
- NOAA/NESDIS Center for Satellite Applications and Research, Cooperative Institute for Meteorological Satellite Studies, Madison, WI, USA
- T. B. Ryerson
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- T. B. Ryerson
- Scientific Aviation, Inc., Boulder, Colorado, USA
- S. P. Sandberg
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- C. W. Sterling
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- C. W. Sterling
- NOAA Global Monitoring Laboratory, Boulder, CO, USA
- C. W. Sterling
- now at: C&D Technologies Inc., Philadelphia, PA, USA
- A. M. Weickmann
- NOAA Chemical Sciences Laboratory, Boulder, CO, USA
- A. M. Weickmann
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- L. Zhang
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
- L. Zhang
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
- L. Zhang
- now at: Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA, USA
- DOI
- https://doi.org/10.5194/acp-22-1707-2022
- Journal volume & issue
-
Vol. 22
pp. 1707 – 1737
Abstract
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS) was conducted in May and June of 2017 to study the transport of ozone (O3) to Clark County, Nevada, a marginal non-attainment area in the southwestern United States (SWUS). This 6-week (20 May–30 June 2017) field campaign used lidar, ozonesonde, aircraft, and in situ measurements in conjunction with a variety of models to characterize the distribution of O3 and related species above southern Nevada and neighboring California and to probe the influence of stratospheric intrusions and wildfires as well as local, regional, and Asian pollution on surface O3 concentrations in the Las Vegas Valley (≈ 900 m above sea level, a.s.l.). In this paper, we describe the FAST-LVOS campaign and present case studies illustrating the influence of different transport processes on background O3 in Clark County and southern Nevada. The companion paper by Zhang et al. (2020) describes the use of the AM4 and GEOS-Chem global models to simulate the measurements and estimate the impacts of transported O3 on surface air quality across the greater southwestern US and Intermountain West. The FAST-LVOS measurements found elevated O3 layers above Las Vegas on more than 75 % (35 of 45) of the sample days and show that entrainment of these layers contributed to mean 8 h average regional background O3 concentrations of 50–55 parts per billion by volume (ppbv), or about 85–95 µg m−3. These high background concentrations constitute 70 %–80 % of the current US National Ambient Air Quality Standard (NAAQS) of 70 ppbv (≈ 120 µg m−3 at 900 m a.s.l.) for the daily maximum 8 h average (MDA8) and will make attainment of the more stringent standards of 60 or 65 ppbv currently being considered extremely difficult in the interior SWUS.