Physical Review Research (May 2022)
Microwave sensing of Andreev bound states in a gate-defined superconducting quantum point contact
Abstract
We use a superconducting microresonator as a cavity to sense absorption of microwaves by a superconducting quantum point contact defined by surface gates over a proximitized two-dimensional electron gas. Renormalization of the cavity frequency with phase difference across the point contact is consistent with coupling to Andreev bound states. Near π phase difference, we observe random fluctuations in absorption with gate voltage, related to quantum interference-induced modulations in the electron transmission. Close to pinch-off, we identify features consistent with the presence of a single Andreev bound state and describe the Andreev-cavity interaction using a Jaynes-Cummings model. By fitting the weak Andreev-cavity coupling, we extract ∼GHz decoherence consistent with charge noise and the transmission dispersion associated with a localized state.