Forests (Dec 2022)

Distribution Characteristics and Influence Factors of Rhizosphere Glomalin-Related Soil Protein in Three Vegetation Types of Helan Mountain, China

  • Hui Hou,
  • Peixuan Yan,
  • Qinmi Xie,
  • Hongliang Zhao,
  • Haiying Zhang,
  • Yingze Lv,
  • Danbo Pang,
  • Yang Hu,
  • Jingyao Li,
  • Fang Wang,
  • Xilu Ni

DOI
https://doi.org/10.3390/f13122092
Journal volume & issue
Vol. 13, no. 12
p. 2092

Abstract

Read online

To reveal distribution characteristics of glomalin-related soil protein (GRSP) and it’s influencing factors under different vegetation types in the drought-tolerant shrubland of Helan Mountain, we chose three vegetation types as study subjects: Stipa breviflora (Grassland, G), Amygdalus mongolica (Shrub, S), and Stipa breviflora-Amygdalus mongolica (Grassland-Shrub, G×S) and bare soil was used as the control (CK). The contents of easily extractable glomalin-related soil protein (EE-GRSP) and total glomalin-related soil protein (T-GRSP), soil physicochemical properties, colonization rate, spore density, and species abundance in the rhizosphere soil were determined. The results indicated that EE-GRSP and T-GRSP showed significant difference (p −1, respectively) and lowest under CK (3.84 and 4.48 mg·g−1, respectively). EE-GRSP/soil organic carbon (SOC) and T-GRSP/SOC showed no significant difference (p > 0.05). The trends of colonization rate, spore density, and species abundance were the same and were significantly different from those of GRSP content (p −1, and 29.7, and minimum values of 55.6%, 13.0 × 10 g−1, and 12.7, respectively. Pearson correlation analysis showed that EE-GRSP was significantly positively correlated with SOC, total phosphorus, available phosphorus, and colonization rate (p p p p < 0.01). The redundancy analysis (RDA) showed similar results. Therefore, the distribution characteristics of GRSP and its influencing factors under different vegetation types in the low elevation area of Helan Mountain were influenced by vegetation types, physicochemical properties of rhizosphere soil, and arbuscular mycorrhizal fungi (AMF) colonization, thus providing a scientific basis for soil quality improvement and vegetation restoration.

Keywords