Water (Jan 2023)

Results of Adding Sludge Micropowder for Microbial Structure and Partial Nitrification and Denitrification in a Filamentous AGS-SBR Using High-Ammonia Wastewater

  • Jun Liu,
  • Dong Xu,
  • Weiqiang He,
  • Qiulai He,
  • Wenhai Chu,
  • Songbo Li,
  • Jun Li

DOI
https://doi.org/10.3390/w15030508
Journal volume & issue
Vol. 15, no. 3
p. 508

Abstract

Read online

This work investigated the roles of sludge micropowder addition in microbial structure and partial nitrification and denitrification (PND) in an extended filamentous aerobic granular sludge-sequencing batch reactor (AGS-SBR) using high-ammonia wastewater. Type 1683 Acinetobacter with a high percentage became the dominant extended filaments, remarkably shifted and remained at a low level, acting as a framework for AGS recovery after micropowder addition. The sludge volume index (SVI5) decreased from 114 to 41.7 mL/g, mixed liquid suspended solids (MLSS) and extracellular polymers (EPS) both increased and balanced at 6836 mg/L and 113.4 mg/g•MLVSS, respectively. COD and NH4+-N were degraded to certain degrees in the end. However, the effluent NO2−-N accumulated to the peak value of 97.6 mg/L on day 100 (aeration stage), then decreased and remained at 45.3 mg/L with development of the stirring and micropowder supplemented in the SBR on day 160 (anoxic stage), while the influent NO2−-N always remained at zero. Interestingly, the influent/effluent NO3−-N both remained at zero throughout the whole experiment. These results demonstrated that PND was successfully obtained in this work. Sludge micropowder addition not only restrained the extended filaments’ overgrowth, but also contributed to PND realization with carbon released. Citrobacter and Thauera played an essential role in the PND process for high-ammonia wastewater treatment. Running condition, wastewater characteristic, and sludge structure played an important role in microbial composition.

Keywords