Applied Sciences (Jan 2016)

Coordinated Volt/Var Control in Distribution Systems with Distributed Generations Based on Joint Active and Reactive Powers Dispatch

  • Abouzar Samimi,
  • Ahad Kazemi

DOI
https://doi.org/10.3390/app6010004
Journal volume & issue
Vol. 6, no. 1
p. 4

Abstract

Read online

One of the most significant control schemes in optimal operation of distribution networks is Volt/Var control (VVC). Owing to the radial structure of distribution systems and distribution lines with a small X/R ratio, the active power scheduling affects the VVC issue. A Distribution System Operator (DSO) procures its active and reactive power requirements from Distributed Generations (DGs) along with the wholesale electricity market. This paper proposes a new operational scheduling method based on a joint day-ahead active/reactive power market at the distribution level. To this end, based on the capability curve, a generic reactive power cost model for DGs is developed. The joint active/reactive power dispatch model presented in this paper motivates DGs to actively participate not only in the energy markets, but also in the VVC scheme through a competitive market. The proposed method which will be performed in an offline manner aims to optimally determine (i) the scheduled active and reactive power values of generation units; (ii) reactive power values of switched capacitor banks; and (iii) tap positions of transformers for the next day. The joint active/reactive power dispatch model for daily VVC is modeled in GAMS and solved with the DICOPT solver. Finally, the plausibility of the proposed scheduling framework is examined on a typical 22-bus distribution test network over a 24-h period.

Keywords