A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study
Jing Zhang,
Kuan Yao,
Panpan Liu,
Zhenyu Liu,
Tao Han,
Zhiyong Zhao,
Yuntai Cao,
Guojin Zhang,
Junting Zhang,
Jie Tian,
Junlin Zhou
Affiliations
Jing Zhang
Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, , China
Kuan Yao
CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, , China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
Panpan Liu
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuan Xilu 119, Fengtai District, Beijing, China; Department of Neurosurgery, The Municipal Hospital of Weihai, China
Zhenyu Liu
CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, , China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100080, China
Tao Han
Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
Zhiyong Zhao
Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China
Yuntai Cao
Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
Guojin Zhang
Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
Junting Zhang
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuan Xilu 119, Fengtai District, Beijing, China; Corresponding authors.
Jie Tian
CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, , China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100080, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China; Corresponding authors.
Junlin Zhou
Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Corresponding authors.
Background: Prediction of brain invasion pre-operatively rather than postoperatively would contribute to the selection of surgical techniques, predicting meningioma grading and prognosis. Here, we aimed to predict the risk of brain invasion in meningioma pre-operatively using a nomogram by incorporating radiomic and clinical features. Methods: In this case-control study, 1728 patients from Beijing Tiantan Hospital (training cohort: n = 1070) and Lanzhou University Second Hospital (external validation cohort: n = 658) were diagnosed with meningiomas by histopathology. Radiomic features were extracted from the T1-weighted post-contrast and T2-weighted magnetic resonance imaging. The least absolute shrinkage and selection operator was used to select the most informative features of different modalities. The support vector machine algorithm was used to predict the risk of brain invasion. Furthermore, a nomogram was constructed by incorporating radiomics signature and clinical risk factors, and decision curve analysis was used to validate the clinical usefulness of the nomogram. Findings: Sixteen features were significantly correlated with brain invasion. The clinicoradiomic model derived from the fusing MRI sequences and sex resulted in the best discrimination ability for risk prediction of brain invasion, with areas under the curves (AUCs) of 0•857 (95% CI, 0•831–0•887) and 0•819 (95% CI, 0•775–0•863) and sensitivities of 72•8% and 90•1% in the training and validation cohorts, respectively. Interpretation: Our clinicoradiomic model showed good performance and high sensitivity for risk prediction of brain invasion in meningioma, and can be applied in patients with meningiomas. Funding: This work was supported by the National Natural Science Foundation of China (81772006, 81922040); the Youth Innovation Promotion Association CAS (grant numbers 2019136); special fund project for doctoral training program of Lanzhou University Second Hospital (grant numbers YJS-BD-33).