Ecology and Evolution (Mar 2024)

Flood‐irrigated agriculture mediates climate‐induced wetland scarcity for summering sandhill cranes in western North America

  • J. Patrick Donnelly,
  • Daniel P. Collins,
  • Jeffrey M. Knetter,
  • James H. Gammonley,
  • Matthew A. Boggie,
  • Blake A. Grisham,
  • M. Cathy Nowak,
  • David E. Naugle

DOI
https://doi.org/10.1002/ece3.10998
Journal volume & issue
Vol. 14, no. 3
pp. n/a – n/a

Abstract

Read online

Abstract Information about species distributions is lacking in many regions of the world, forcing resource managers to answer complex ecological questions with incomplete data. Information gaps are compounded by climate change, driving ecological bottlenecks that can act as new demographic constraints on fauna. Here, we construct greater sandhill crane (Antigone canadensis tabida) summering range in western North America using movement data from 120 GPS‐tagged individuals to determine how landscape composition shaped their distributions. Landscape variables developed from remotely sensed data were combined with bird locations to model distribution probabilities. Additionally, land‐use and ownership were summarized within summer range as a measure of general bird use. Wetland variables identified as important predictors of bird distributions were evaluated in a post hoc analysis to measure long‐term (1984–2022) effects of climate‐driven surface water drying. Wetlands and associated agricultural practices accounted for 1.2% of summer range but were key predictors of occurrence. Bird distributions were structured by riparian floodplains that concentrated wetlands, and flood‐irrigated agriculture in otherwise arid and semi‐arid landscapes. Findings highlighted the role of private lands in greater sandhill crane ecology as they accounted for 78% of predicted distributions. Wetland drying observed in portions of the range from 1984 to 2022 represented an emerging ecological bottleneck that could limit future greater sandhill crane summer range. Study outcomes provide novel insight into the significance of ecosystem services provided by flood‐irrigated agriculture that supported nearly 60% of wetland resources used by birds. Findings suggest greater sandhill cranes function as a surrogate species for agroecology and climate change adaptation strategies seeking to reduce agricultural water use through improved efficiency while also maintaining distinct flood‐irrigation practices supporting greater sandhill cranes and other wetland‐dependent wildlife. We make our wetland and sandhill crane summering distributions available as interactive web‐based mapping tools to inform conservation design.

Keywords