Fast Bulky Anion Conduction Enabled by Free Shuttling Phosphonium Cations
Xiaolin Ge,
Yubin He,
Kaiyu Zhang,
Xian Liang,
Chengpeng Wei,
Muhammad A. Shehzad,
Wanjie Song,
Zijuan Ge,
Geng Li,
Weisheng Yu,
Liang Wu,
Tongwen Xu
Affiliations
Xiaolin Ge
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Yubin He
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Kaiyu Zhang
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Xian Liang
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; School of Chemistry and Material Engineering, Huainan Normal University, Huainan, Anhui 232001, China
Chengpeng Wei
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Muhammad A. Shehzad
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Wanjie Song
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Zijuan Ge
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Geng Li
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Weisheng Yu
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Liang Wu
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Tongwen Xu
CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
Highly conductive anion-exchange membranes (AEMs) are desirable for applications in various energy storage and conversion technologies. However, conventional AEMs with bulky HCO3- or Br- as counterion generally exhibit low conductivity because the covalent bonding restrains the tethered cationic group’s mobility and rotation. Here, we report an alternative polyrotaxane AEM with nontethered and free-shuttling phosphonium cation. As proved by temperature-dependent NMR, solid-state NMR, and molecular dynamics simulation, the phosphonium cation possesses a thermally trigged shuttling behavior, broader extension range, and greater mobility, thus accelerating the diffusion conduction of bulky anions. Owing to this striking feature, high HCO3- conductivity of 105 mS cm-1 at 90°C was obtained at a relatively lower ion-exchange capacity of 1.17 mmol g-1. This study provides a new concept for developing highly conductive anion-exchange membranes and will catalyze the exploration of new applications for polyrotaxanes in ion conduction processes.