Respiratory Research (Nov 2023)

METTL3-mediated m6A RNA methylation induces the differentiation of lung resident mesenchymal stem cells into myofibroblasts via the miR-21/PTEN pathway

  • Yi Lu,
  • Zeyu Liu,
  • Yunjiao Zhang,
  • Xiuhua Wu,
  • Wei Bian,
  • Shan Shan,
  • Danrong Yang,
  • Tao Ren

DOI
https://doi.org/10.1186/s12931-023-02606-z
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background The accumulation of myofibroblasts is the key pathological feature of pulmonary fibrosis (PF). Aberrant differentiation of lung-resident mesenchymal stem cells (LR-MSCs) has been identified as a critical source of myofibroblasts, but the molecular mechanisms underlying this process remain largely unknown. In recent years, N6-methyladenosine (m6A) RNA modification has been implicated in fibrosis development across diverse organs; however, its specific role in promoting the differentiation of LR-MSCs into myofibroblasts in PF is not well defined. Methods In this study, we examined the levels of m6A RNA methylation and the expression of its regulatory enzymes in both TGF-β1-treated LR-MSCs and fibrotic mouse lung tissues. The downstream target genes of m6A and their related pathways were identified according to a literature review, bioinformatic analysis and experimental verification. We also assessed the expression levels of myofibroblast markers in treated LR-MSCs and confirmed the involvement of the above-described pathway in the aberrant differentiation direction of LR-MSCs under TGF-β1 stimulation by overexpressing or knocking down key genes within the pathway. Results Our results revealed that METTL3-mediated m6A RNA methylation was significantly upregulated in both TGF-β1-treated LR-MSCs and fibrotic mouse lung tissues. This process directly led to the aberrant differentiation of LR-MSCs into myofibroblasts by targeting the miR-21/PTEN pathway. Moreover, inhibition of METTL3 or miR-21 and overexpression of PTEN could rescue this abnormal differentiation. Conclusion Our study demonstrated that m6A RNA methylation induced aberrant LR-MSC differentiation into myofibroblasts via the METTL3/miR-21/PTEN signaling pathway. We indicated a novel mechanism to promote PF progression. Targeting METTL3-mediated m6A RNA methylation and its downstream targets may present innovative therapeutic approaches for the prevention and treatment of PF.

Keywords