PLoS ONE (Jan 2013)

Mesothelin virus-like particle immunization controls pancreatic cancer growth through CD8+ T cell induction and reduction in the frequency of CD4+ foxp3+ ICOS- regulatory T cells.

  • Sheng Zhang,
  • Lin-Kin Yong,
  • Dali Li,
  • Rafael Cubas,
  • Changyi Chen,
  • Qizhi Yao

DOI
https://doi.org/10.1371/journal.pone.0068303
Journal volume & issue
Vol. 8, no. 7
p. e68303

Abstract

Read online

Our previous study has shown that mesothelin (MSLN) is a potential immunotherapeutic target for pancreatic cancer. Here, we further studied the immunogenicity of chimeric murine MSLN-virus-like particles (mMSLN-VLPs), their ability to break tolerance to mMSLN, a self-antigen, and deciphered the mechanism of immune responses elicited by mMSLN-VLP immunization using a pancreatic cancer (PC) mouse model. In addition to what we have found with xenogeneic human MSLN-VLP (hMSLN-VLP), mMSLN-VLP immunization was able to break the tolerance to intrinsic MSLN and mount mMSLN-specific, cytotoxic CD8(+) T cells which led to a significant reduction in tumor volume and prolonged survival in an orthotopic PC mouse model. Furthermore, CD4(+)foxp3(+) regulatory T cells (Tregs) were progressively decreased in both spleen and tumor tissues following mMSLN-VLP immunization and this was at least partly due to elevated levels of IL-6 production from activated plasmocytoid dendritic cell (pDC)-like cells following mMSLN-VLP immunization. Moreover, mMSLN-VLP treatment mainly reduced the frequency of the CD4(+)foxp3(+)ICOS(-) Treg subset. However, mMSLN-VLP induced IL-6 production also increased ICOSL expression on pDC-like cells which supported the proliferation of immunosuppressive CD4(+)foxp3(+)ICOS(+) Treg cells. This study reveals that mMSLN-VLP immunization is capable of controlling PC progression by effectively mounting an immune response against mMSLN, a tumor self-antigen, and altering the immunosuppressive tumor microenvironment via activation of pDCs-like cells and reduction in the frequency of CD4(+)foxp3(+)ICOS(-) Treg cells. However, combination therapies will likely need to be used in order to target residual CD4(+)foxp3(+)ICOS(+) Treg cells.