Measurement reliability for individual differences in multilayer network dynamics: Cautions and considerations
Zhen Yang,
Qawi K. Telesford,
Alexandre R. Franco,
Ryan Lim,
Shi Gu,
Ting Xu,
Lei Ai,
Francisco X. Castellanos,
Chao-Gan Yan,
Stan Colcombe,
Michael P. Milham
Affiliations
Zhen Yang
Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States; Department of Psychiatry, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, United States; Corresponding authors at: Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States.
Qawi K. Telesford
Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
Alexandre R. Franco
Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States; Department of Psychiatry, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, United States; Center for the Developing Brain, The Child Mind Institute, 101 East 56th Street, New York, NY 10022, United States
Ryan Lim
Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States
Shi Gu
University of Electronic Science and Technology of China, Chengdu, Sichuan, China
Ting Xu
Center for the Developing Brain, The Child Mind Institute, 101 East 56th Street, New York, NY 10022, United States
Lei Ai
Center for the Developing Brain, The Child Mind Institute, 101 East 56th Street, New York, NY 10022, United States
Francisco X. Castellanos
Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States; Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States
Chao-Gan Yan
CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
Stan Colcombe
Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States; Department of Psychiatry, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, United States
Michael P. Milham
Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States; Center for the Developing Brain, The Child Mind Institute, 101 East 56th Street, New York, NY 10022, United States; Corresponding authors at: Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, United States.
Multilayer network models have been proposed as an effective means of capturing the dynamic configuration of distributed neural circuits and quantitatively describing how communities vary over time. Beyond general insights into brain function, a growing number of studies have begun to employ these methods for the study of individual differences. However, test–retest reliabilities for multilayer network measures have yet to be fully quantified or optimized, potentially limiting their utility for individual difference studies. Here, we systematically evaluated the impact of multilayer community detection algorithms, selection of network parameters, scan duration, and task condition on test–retest reliabilities of multilayer network measures (i.e., flexibility, integration, and recruitment). A key finding was that the default method used for community detection by the popular generalized Louvain algorithm can generate erroneous results. Although available, an updated algorithm addressing this issue is yet to be broadly adopted in the neuroimaging literature. Beyond the algorithm, the present work identified parameter selection as a key determinant of test–retest reliability; however, optimization of these parameters and expected reliabilities appeared to be dataset-specific. Once parameters were optimized, consistent with findings from the static functional connectivity literature, scan duration was a much stronger determinant of reliability than scan condition. When the parameters were optimized and scan duration was sufficient, both passive (i.e., resting state, Inscapes, and movie) and active (i.e., flanker) tasks were reliable, although reliability in the movie watching condition was significantly higher than in the other three tasks. The minimal data requirement for achieving reliable measures for the movie watching condition was 20 min, and 30 min for the other three tasks. Our results caution the field against the use of default parameters without optimization based on the specific datasets to be employed – a process likely to be limited for most due to the lack of test–retest samples to enable parameter optimization.