Shock and Vibration (Jan 2013)

Safety Region Estimation and State Identification of Rolling Bearing Based on Statistical Feature Extraction

  • Yuan Zhang,
  • Yong Qin,
  • Zongyi Xing,
  • Limin Jia,
  • Xiaoqing Cheng

DOI
https://doi.org/10.3233/SAV-130788
Journal volume & issue
Vol. 20, no. 5
pp. 833 – 846

Abstract

Read online

The idea of safety region was introduced into the rolling bearing condition monitoring. The safety region estimation and the state identification of the rolling bearing operational were performed by the comprehensive utilization of Empirical Mode Decomposition (EMD), Principal Component Analysis (PCA), and the Least Square Support Vector Machine (LSSVM). The collected vibration data was segmented according to a certain time interval, and then the Intrinsic Mode Functions (IMFs) of each piece of the data were obtained by EMD. The control limits of two statistical variables extracted by PCA were presented as state characteristics. The safety region estimation for the rolling bearing operational status was performed by two-class LSSVM. The states of normal bearing, ball fault, inner race fault, and outer race fault were identified by the multi-class LSSVM. The results show that the estimation accuracy for both the safety region and the states identification reached 95%, and that the validity of the proposed method was verified.