Poultry Science (Jun 2023)

Effects of dietary theabrownins on production performance, egg quality, and ovarian function of laying hens with different ages

  • Wenwen Xu,
  • Yuxiang Ayu,
  • Jianping Wang,
  • Qiufeng Zeng,
  • Shiping Bai,
  • Xuemei Ding,
  • Li Lv,
  • Huanwei Peng,
  • Yue Xuan,
  • Keying Zhang

Journal volume & issue
Vol. 102, no. 6
p. 102545

Abstract

Read online

ABSTRACT: This experiment was conducted to investigate the effect of theabrownins (TB) on production performance, egg quality, and ovarian function of laying hens at different ages. A total of 240 Lohmann laying hens were assigned in a 2 × 2 factorial design, which encompassed 2 layers ages (47-wk-old and 67-wk-old) and 2 dietary levels of TB (0 and 100 mg/kg) for 12 wk. Results showed that older layers had lower laying rate, egg mass, and higher feed-to-egg ratio (F/E), egg weight and unqualified egg rate than the younger layers (P(AGE) < 0.01) during all the experimental period. The effect of TB was found to increase egg laying rate and feed efficiency during 5 to 8 wk, 9 to 12 wk and the overall phases and decreased unqualified egg rate during 1 to 4 wk and the overall phases (P(TB) ≤ 0.05). The eggshell quality (strength, thickness), albumen quality (albumen height and Haugh unit) of eggs from older layers were decreased during overall phases (P(AGE) ≤ 0.05). TB increased eggshell strength during all phases and enhanced eggshell thickness at the end of wk 4 and 8 and increased albumen height and Haugh unit at the end of wk 8 and 12 of older layers (P(Interaction) ≤ 0.05). In addition, TB also increased egg quality of older layers after 14 d storage. A decrease in the serum concentration of progesterone, melatonin, follicle stimulating hormone, estradiol was observed in the older compared to the younger ones (P(AGE) < 0.05), while the increase in serum concentration of progesterone, melatonin, anti-Müllerian hormone (AMH) were more emphasized when older hens received TB supplemented diet (P(Interaction) < 0.05). The older layer demonstrated lower the concentration of glutathione (GSH) (P(AGE) < 0.05). And the activity of glutathione-s-transferase (GST) was significantly decreased in layers under 67-wk-old (P(AGE) <0.05). The increase in concentration of GSH and the decrease in concentration of malondialdehyde (MDA) were more pronounced when TB were supplemented in 67-wk-old layers (P(Interaction) ≤ 0.05). Layers at 67-wk-old had lower mRNA expression of Heme oxygenase 1 (HO-1) (P(AGE) < 0.01) in ovary. Dietary TB supplementation upregulated mRNA gene expression of HO-1, Nuclear factor E2 related factor 2 (Nrf2), Quinone oxidoreductase 1 (NQO1) (P(TB) < 0.01). Dietary TB upregulated mRNA expression of ovarian reproductive hormone receptor (estrogen receptor 1 [ESR1] and steroidogenic acute regulatory protein 1 [StAR1]]; P(TB) < 0.01). The results suggest feeding TB (100 mg/kg) could improve the egg production rate, egg quality, and antioxidant capacity of the ovary. Moreover, the effect of TB was more pronounced in older layers (64-wk-old vs. 47-wk-old).

Keywords