Materials (May 2024)
Effects of a Complex Environment on Fatigue and Self-Healing Characterization of Asphalt Composites Containing Rock Asphalt
Abstract
In recent years, asphalt pavement has been subjected to varied environmental conditions during its service life, conditions that predispose it to deformation and cracking. To enhance the performance of asphalt pavement, rock asphalt has been selected as a modifier due to its good compatibility with virgin asphalt binder and its ability to improve the fatigue cracking resistance of asphalt mixtures. Although scholars have conducted some studies on rock asphalt mixtures, research on the fatigue and self-healing performance of these mixtures under conditions such as ultraviolet (UV) aging and freeze–thaw remains limited. This paper presents findings from a study that employs a combined fatigue-healing test to assess the impact of such complex environmental factors on the fatigue and self-healing properties of fine aggregate matrix (FAM) mixtures containing three types of rock asphalts, i.e., Buton, Qingchuan (QC), and Uintaite Modifier (UM). The analysis of fatigue-healing test results, grounded in viscoelastic continuum damage (VECD) theory, indicates that rock asphalt can extend the fatigue life of FAM mixtures, albeit with a concomitant decrease in their self-healing capabilities. The study further reveals that UV aging, freeze–thaw, and UV aging–freeze–thaw conditions all led to a diminution in the fatigue and self-healing properties of FAM mixtures. However, FAM mixtures containing rock asphalt demonstrated greater resilience against these reductions. Atomic force microscope (AFM) results indicate that UV aging reduced the number of bee-structures and enlarged their area, whereas the incorporation of rock asphalt enhanced the uniformity of these structures’ distribution, thereby improving the fatigue cracking resistance of FAM mixtures. Fourier transform infrared spectroscopy (FTIR) analysis reveals that while UV aging increased the carbonyl and sulfoxide indices within the asphalt binder, rock asphalt is effective in mitigating this effect to a certain degree, thereby enhancing the aging resistance of FAM mixtures.
Keywords