IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2021)

Learning an SAR Image Despeckling Model Via Weighted Sparse Representation

  • Junchao Zhang,
  • Jianlai Chen,
  • Hanwen Yu,
  • Degui Yang,
  • Xiaoqing Xu,
  • Mengdao Xing

DOI
https://doi.org/10.1109/JSTARS.2021.3097119
Journal volume & issue
Vol. 14
pp. 7148 – 7158

Abstract

Read online

Synthetic aperture radar (SAR) images are inherently degraded by the speckle noise due to the coherent imaging, which may affect the performance of subsequent image analysis task. To address this problem, a weighted sparse representation-based method is proposed in this article for SAR image despeckling. The homomorphic transformation is first adopted to convert multiplicative noise into additive one. Second, similar patches are grouped together to learn the adaptive dictionaries and sparse coefficients based on nonlocal self-similarity constraint. Moreover, weighted regularizations are adopted for coefficients to boost the performance. Finally, despeckling images are obtained via exponential transformation. Experimental results on synthetic and real-world SAR images demonstrate that our proposed method outperforms several state-of-the-art methods in terms of both quantitative measurements and visual quality.

Keywords