Transactions on Combinatorics (Sep 2017)

Common extremal graphs for three inequalities involving domination parameters

  • Vladimir Samodivkin

DOI
https://doi.org/10.22108/toc.2017.21464
Journal volume & issue
Vol. 6, no. 3
pp. 1 – 9

Abstract

Read online

‎Let $delta (G)$‎, ‎$Delta (G)$ and $gamma(G)$‎ ‎be the minimum degree‎, ‎maximum degree and‎ ‎domination number of a graph $G=(V(G)‎, ‎E(G))$‎, ‎respectively‎. ‎A partition of $V(G)$‎, ‎all of whose classes are dominating sets in $G$‎, ‎is called a domatic partition of $G$‎. ‎The maximum number of classes of‎ ‎a domatic partition of $G$ is called the domatic number of $G$‎, ‎denoted $d(G)$‎. ‎It is well known that‎ ‎$d(G) leq delta(G)‎ + ‎1$‎, ‎$d(G)gamma(G) leq |V(G)|$ cite{ch}‎, ‎and $|V(G)| leq (Delta(G)‎+‎1)gamma(G)$ cite{berge}‎. ‎In this paper‎, ‎we investigate the graphs $G$ for which‎ ‎all the above inequalities become simultaneously equalities‎.

Keywords